Selasa, 19 Januari 2016

SEBARAN PELUANG KONTINU



A. Pengertian Distribusi Peluang Kontinu
          Distribusi peluang kontinu adalah peubah acak yang dapat memperoleh semua nilai pada      skala
    . Ruang sampel kontinu adalah bila ruang sampel mengandung titik sampel yang tak terhingga
      banyaknya. Syarat dari distribusi kontinu adalah apabila fungsi f(x) adalah fungsi pada peluang
      peubah acak kontinu X yang didefinisikan di atas himpunan semua bilangan riil R bila:
      1. F(x) ≥ 0 untuk semua x є R
      2. ∫
��(��)����=1∞∞
      3.
��(��<��<��)= ∫��(��)����

B. Konsep dan Teorema Distribusi

      1.Distribusi Normal
            Distribusi Normal (Gaussian) mungkin merupakan distribusi probabilitas yang paling penting
      baik dalam teori maupun aplikasi statistik. Distribusi ini paling banyak digunakan sebagai model
      bagi data riil di berbagai bidang yang meliputi antara lain karakteristik fisik makhluk hidup
       (berat, tinggi badan manusia, hewan, dll). Terdapat empat alasan mengapa distribusi normal
       menjadi distribusi yang paling penting :
           a. Distribusi normal terjadi secara alamiah.
           b. Beberapa variabel acak yang tidak terdistribusi secara normal dapat dengan mudah
               ditransformasi menjadi suatu distribusi variabel acak yang normal.
           c. Banyak hasil dan teknik analisis yang berguna dalam pekerjaan statistik hanya bisa
                berfungsi dengan benar jika model distribusinya merupakan distribusi normal.
           d. Ada beberapa variabel acak yang tidak menunjukkan distribusi normal pada populasinya,
         namun distribusi dari rata-rata sampel yang diambil secara random dari populasi tersebut
       ternyata menunjukkan distribusi normal.
               Distribusi Normal disebut juga Gausian distribution adalah salah satu fungsi distribusi
       peluang
       berbentuk lonceng seperti gambar berikut.










Berdasarkan gambar di atas, distribusi Normal akan memiliki beberapa ciri diantaranya:
            a. Kurvanya berbentuk garis lengkung yang halus dan berbentuk seperti genta.
            b. Simetris terhadap rataan (mean).
            c. Kedua ekor/ ujungnya semakin mendekati sumbu absisnya tetapi tidak pernah maemotong.
            d. Jarak titik belok kurva tersebut dengan sumbu simetrisnya sama dengan σ
            e. Luas daerah di bawah lengkungan kurva tersebut dari - ~ sampai + ~ sama dengan 1 atau
                100 %.

            Sebuah variabel acak kontinu X dikatakan memiliki distribusi normal dengan parameter ����
    dan ���� dimana −∞<����<∞ dan ����>0 jika fungsi kepadatan probabilitas dari X adalah
    ����(��;����,����)=1����√2����−(������)2(2����2) , −∞<��<∞ ........................ (1)
    Dimana :
    ���� = mean
    ���� = deviasi standard
    �� = nilai konstan yaitu 3, 1416
    ��= nilai konstan yaitu 2,7183
            Untuk setiap nilai ���� dan ����, kurva fungsi akan simetris terhadap ���� dan memiliki total luas
    dibawah kurva tepat 1. Nilai dari ���� menentukan bentangan dari kurva sedangkan ���� menentukan
    pusat simetrisnya.
            Distribusi normal kumulatif didefinisikan sebagai probabilitas variabel acak normal X bernilai
    kurang dari atau sama dengan suatu nilai x tertentu. Maka fungsi distribusi kumulatif dari distribusi
    normal ini dinyatakan sebagai :
    ����(��;����,����)=��(����)=∫����(��;����,����)����=∫1����√2����(������)2(2����2)������−∞��−∞ ..............(2)

            Untuk menghitung probabilitas ��(������) dari suatu variabel acak kontinu X yang
   terdistribusi secara normal dengan parameter ���� dan ���� maka persamaan (1) harus diintegralkan
   mulai dari ��=�� sampai ��=��. Namun, tidak ada satupun dari teknik-teknik   pengintegralan biasa yang
   bisa digunakan untuk menentukan integral tersebut. Untuk itu para ahli statistik/matematik telah
   membuat sebuah penyederhanaan dengan memperkenalkan sebuah fungsi kepadatan probabilitas
   normal khusus dengan nilai mean ��=0 dan deviasi standard ��=1. Distribusi ini dikenal sebagai
   distribusi normal standard (standard normal distribution). Variabel acak dari distribusi normal
   standard ini biasanya dinotasikan dengan Z.
             Dengan menerapkan ketentuan diatas pada persamaan (1) maka fungsi kepadatan probabilitas
    dari distribusi normal standard variabel acak kontinu Z adalah:
    ����(��;0,1)=1√2������22 , −∞<��<∞ ......................................................(3)
    Sedangkan fungsi distribusi kumulatif dari distribusi normal standard ini dinyatakan sebagai :
    ����(��;0,1)=��(����)=Φ(��)=∫1√2������22������−∞ ..................................(4)
             Distribusi normal variabel acak kontinu X dengan nilai-nilai parameter ���� dan ���� berapapun
    dapat diubah menjadi distribusi normal kumulatif standard jika variabel acak standard Zx menurut
     hubungan :
     ����=����������
    Nilai ���� dari variabel acak standard ���� sering juga disebut sebagai skor z dari variabel acak X.


    2. Distribusi Chi-Kuadrat (����)
            Distribusi chi-kuadrat merupakan distribusi yang banyak digunakan dalam sejumlah prosedur      statistik inferensial. Distribusi chi-kuadrat merupakan kasus khusus dari distribusi gamma dengan      faktor bentuk ��=��/2, dimana v adalah bilangan bulat positif dan faktor skala ��=2.
             Jika variabel acak kontinu X memiliki distribusi chi-kudrat dengan parameter v, maka fungsi      kepadatan probabilitas dari X adalah :
     ����2(��;��)={12��2Γ(��2)��(��2)−1����2 ��≥0 0 �������� ��������
              Parameter n disebut angka derajat kebebasan (degree of freedom/df) dari X. Sedangkan
     fungsi distribusi kumulatif chi-kuadrat adalah :
     ����2(��;��)=��(����)=∫12��2Γ(��2)��(��2)−1����2 ��0����

               Berikut ini diberikan rumusan beberapa ukuran statistik deskriptif untuk distribusi chi
      kuadrat.
      Mean (Nilai Harapan) :
      ����=��( ㄰)=��
      Varians :
      ����2=2��
      Kemencengan (skewness) :
      ��1=��32=8��
      Keruncingan (kurtosis) :
      ��2=��4=3(4��+1)
      Contoh :
             Suatu perusahaan baterai mobil memberikan jaminan bahwa masa pakai baterai yang
       diproduksinya adalah rata-rata 3 tahun dengan simpangan baku 1 tahun. Jika diambil contoh
       sebanyak 5 buah baterai dan masa pakainya (dalam tahun) adalah: 1,9 ; 2,4 ; 3,0 ; 3,5 ; dan 4,2.
              Apakah benar bahwa jaminan perusahaan tentang simpangan baku 1 tahun dapat dipercaya?
       Penyelesaian :
       Pertama-tama kita menghitung nilai ragam contoh (��2) : 
       ��2=48,26−(15)255−1=0,815 ��2=(��  −1)��2��2=(4)(0,815)1=3,26
              Nilai 3,26 adalah nilai chi kuadrat dengn derajat bebas v = n-1 = 5-1 =4. Karena 95% dari
        nilai chi kuadrat dengan derajat bebas 4 terletak antara 0,484 (��0,0252) dan 11,1 (��0,9752)
              Maka berdasarkan nilai ��2=3,26 terletak dalam selang nilai sebaran chi kuadrat 95% dengan         derajat bebas 4, maka pernyataan bahwa simpangan baku adalah 1 tahun masih dapat dipercaya.


     4. Distribusi F
               Menurut Gasperz (1989:251), secara teori sebaran F merupakan rasio dari dua sebaran chi              kuadrat yang bebas. Oleh karena itu peubah acak F diberikan sebagai: ��=��12��1⁄��22��2⁄
         Dimana : ��12= ���������� �������� �������������� ���� �������������� ������������ �������������� ���������� ��1=��1−1 ��22=                ���������� �������� �������������� ���� �������������� ������������ �������������� ���������� ��2=��2−1
         Oleh karena itu sebaran F mempunyai dua derajat bebas yaitu ��1 ������ ��2.
         Misal :
         Kita ingin mengetahui nilai F dengan derajat bebas ��1=10 dan ��2=12, maka jika ��=0,05 dari              tabel F diperoleh nilai ��0,05 (10,12)=2,75